
Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management 
Istanbul, Turkey, July 3 – 6, 2012 
 
 

1152 
 

A Cross Entropy-Genetic Algorithm Approach for Multi 
Objective Job Shop Scheduling Problem  

 
Budi Santosa and Liliek Nurkhalida 

Department of Industrial Engineering 
Surabaya Institute of Technology 

Indonesia 
 

Abstract 
 
Multi Objective Job Shop Scheduling Problem (MOJSP) is a problem for finding optimal operation sequences 
of some jobs according to more than one goal to achieve. The problem gets harder as its complexity increases. 
The development of optimization method has led many new methods to solve this problem. This paper offers 
Cross Entropy-Genetic Algorithm (CEGA) method to solve job shop scheduling problem with multi objectives. 
CEGA was cnstructed from combination of Cross Entropy method with Genetic Algorithm. CEGA has been 
successfully applied on single objective job shop scheduling. The weighted objective approach was proposed to 
accommodate multi objective computation. The experiment results show that generally, CEGA produced 
competitive solutions compared to Simulated Annealing. 
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1. Introduction 
Job Shop Scheduling Problem (JSP) is one of NP hard problem. The bigger the problem size, the longer time 
required to solve the problem. It is very time consuming for exact approach to solve this kind of problem. 
While, there are numerous jobs in real world problem, make this problem need long time to find optimal 
solution. Besides, some objectives are commonly considered in real condition. In this paper, JSP takes some 
objectives to be optimized (Multi Objective Job Shop Scheduling Problem). Since the problem gets more 
complex, it needs particular method in order to get satisfied solution in reasonable amount of time.  
 
In this paper, the problem has two objectives commonly found in manufacturing company, minimize makespan 
and TWT [6]. Minimizing total waiting time (TWT) will make production system meet JIT condition. While 
high efficiency on resource utility gained through minimizing the makespan [8,9]. According to [6], makespan 
and TWT are in contradiction. It means that getting better value in one objective will make other objective 
value get worse.  
 
Cross Entropy is merely a new metaheuristics [4]. This algorithm has sample elite mechanism that used in 
generating sample population on the new iteration. This mechanism will keep new population in converge track 
to its optimal solution. Cross Entropy was successfully applied in some others NP hard problem such as 
Generalized Orienting Problem [17], reliable network design [6] and discrete-continuous scheduling with 
continuous resource discretization [10].  
 
This method was combined with Genetic Algorithm, which have cross over and mutation as its mechanism. 
This mechanism was prior to diversify some solutions obtained in each iteration. This will avoid the algorithm 
from local optimal trap. Besides, it has elitism mechanism not found in Cross Entropy. With elitism, the best 
sample on population will be restored and used in the next new sample population. 
 
This hybrid of Cross Entropy-Genetic Algorithm (CEGA) was successfully applied in Job Shop Scheduling 
Problem with single objective [18]. CEGA tends to have good performance on solving Multi Objective Job 
Shop Scheduling Problem. The performance of CEGA was compared to the reference that uses Simulated 
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Annealing as its solving method [6]. This comparative reference was chosen because it uses the same  
objectives as used in this paper, that is  minimize makespan and Total Weighted Tardiness. 
 
2. Problem Description 
2.1 Job Shop Scheduling Problem 
Scheduling problem usually becomes main aspect on economic point of view. Job shop scheduling was one of 
those problems which founded in production floor environment. This kind of problem known as difficult 
problem because has many constraints. It is difficult because of complexity structure of unit produced and so, 
makes many variation of production flow [10]. There are mono objective and multi objectives mode on its case. 
Job Shop Scheduling Problem was described on some points below [19]: 
 

• The problem consists of n jobs and each job has some o operations. 
• There are m machines, each of them can only operate one operation in a time. 
• Each operation will be proceeding on certain machine and certain operation time. 
• No breakdown, lost material, etc. that will stop production process. 
• The Job Shop Scheduling Problem goal is to get effective production scheduling, that minimize 

completion time of all jobs. 
 
There are some objectives often used in Multi Objective Job Shop Scheduling Problem such as minimize 
makespan, minimize machine workload, minimize total machine workload, minimize total weighted tardiness, 
minimize tardiness, minimize cost, minimize total weighted completion time. 
 
2.2 Cross Entropy 
Cross Entropy works based on information on the sample distribution [4]. This information helps the algorithm 
to capture the distribution of the good sample. The new sample generated based on this distribution. This 
distribution will be continually updated through each iteration until it finds the optimal solution. Cross Entropy 
has to complete two main steps on its algorithm, they are: 
1. Generate sample randomly 
2. Update its parameter based on data of the best sample (sample elite). So the next iteration will have a good 
sample produced base on this parameter. 
 
2.3 Genetic Algorithm 
Genetic Algorithm is one of the oldest algorithms known in metaheuristics [5]. This algorithm mechanism is 
inspired by biological reproduction process. On this algorithm, the initial sample population generated 
randomly. For each sample generation, there will be fitness value evaluation. The output of fitness evaluation is 
that the sample with the best fitness value will be chosen as sample parent. Two sample parent then processed 
in cross over and mutation mechanism. The spring samples obtained from this process are going to be listed in 
new population sample on the next iteration.  
 
2.4 Multi Objective Problem 
Utility function is a technique that can convert some objective function in multi objective problem into single 
one. It will mark the preference of an objective to the others with a weighted preference [14]. Hence, those 
objectives can be treated as single objective which is easier to solve. This research has two objectives with 
different unit, makespan with time unit and Total Weighted Tardiness with currency. Therefore, it needs 
advance treatment as well as objective function normalization. The formula used in this research based on 
equation (1) [11], is the one which can do both converting multi objective function into single one also unit 
normalization. 
 

distance =                                   (1) 

 
with wi as ith objective’s weight and , fi+ as the best value of ith objective solution and fi

- as the worst value of 
ith objective solution. 
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3. Proposed Algorithm  
CEGA to solve Multi Objective Job Shop Scheduling Problem can be explained through a simple example  on 
some steps below:  
 

1. Initial ization 
Some parameters used are  number of samples (N) = 6, number of operations in one sample (n) = 9, rho (ρ) = 
0.02, alpha (α) = 0.8, Initial crossover parameter (Pps) = 1, Stopping criteria (β) = 0.001, Weighted of 
makespan (bMS) = 0.5, Weighted of Total Weighted Tardiness (bTWT) = 0.5. 
A simple case to explan how the alorithm works is given. Three jobs with its due date and weighted can be seen 
in Table 1, including machine used to process and time duration for processing each operation. 
 

Table 1. Data of 3 Jobs-3 Operations-3 Machines Problem 

machine op. time machine op. time machine op. time
1 17 1 1 4 1 3 2 2 2 1 3
2 15 1 1 2 4 2 5 5 3 3 6
3 11 1 3 1 7 1 3 8 2 2 9

job due 
date

weight
ed

notati
on

notati
on

notat
ion

3rd operation2nd operation1st operation

 
 

2. Generating samples 
The sample is sequence notation form that shows priority of each operation. The notation represents the 
identity of the number, which contains information about its particular operations and job, according to Table 
1. For example, number 4 according to Table 1, represents 1st operation of job 2, while number 8 represent 2nd 
operation of job 3. N samples are generated randomly. For instances, we generated 6 samples as follows: 
 

X1 : 4-5-7-6-1-2-3-8-9, X2 : 4-7-3-9-8-1-5-6-2, X3 : 1-9-7-8-4-6-5-2-3, X4 : 4-5-6-1-7-8-9-2-3 
X5 : 6-3-7-8-5-1-2-4-9, X6 : 5-7-8-3-6-1-2-4-9 

 
3. Get objective value for all samples 

For instance, to get objective value of a sample, we use 1st sample (sample X1). 
1. The first number in notation sequence of sample X1 is 4. Then we check on Table 1, which machine is 
needed to process the operation. This information is important to check the position of the operation through 
others operation. Also check the position on Gantt chart: 

a) If the operation has neither predecessor operation (Po) nor earlier operation (Eo), then start time of 
this operation should be 0. (Po was indicate by smaller number in its job row on Table 1 and Eo was 
indicate by operation exist in front of it in Gantt chart on the same machine) 
b) If there is Eo but no Po of the operation, then the operation start time is equal to finish time of Eo 
c) If there is Po but no Eo of the operation, then the operation start time is equal to finish time of Po 
d) If there are both Eo and Po, then the operation start time is equal to the longer finish time of Eo or 
Po. 
Since operation 4 has no smaller number in row job 2 and also the Gantt chart still blank (no Po and Eo), 
so it satisfied point (a) and should be placed in row “machine 1” on Gantt chart and fill some column 
equal to its operation time. 
  

X1 4

mesin3
mesin2
mesin1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4

m

t

X1 4 5

mesin3
mesin2
mesin1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5
4

m

t
 

 
Figure 1. First Step of Operation Scheduling of Sample X1     Figure 2. Second Step of Operation Scheduling of Sample X1 
 
2. The next priority operation on sample X1 is operation notated by number 5. This operation has 4 as Po but 
has no Eo in row “machine 2” of the last updated Gantt chart. Thus, it satisfied point (c) and has start time 
equal to finish time of operation 4. The operation will update the Gantt chart as seen on Figure 2. 

 



1155 
 

3. Do the same procedure to the rest of operations. Noted that for operation which its Po have not yet 
scheduled in Gantt chart, then the operation can not be executed until its Po is  scheduled. When finally all 
operations scheduled, the  Gantt chart will be seen like Figure 3. 

 
  

mesin3 7
mesin2 3
mesin1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 2
5 9

4 1 8

m

t

mesin3 7
mesin2 3
mesin1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 2
5 9

4 1 8

m

t  
Figure 3. The Last Step of Operation Scheduling of Sample X1   Figure 4. Determining Makespan Value 

 
4. When the Gantt chart already complete, we can decide the makespan value.  The value is equal to the latest 
operation finish time among all operations. For sample X1, the last operation scheduled is operation 9, and it is 
finish on 15. So the makespan of sample X1 is 15 time unit. 

 
5. Next step is counting the Total Weighted Tardiness. Count on the lateness job due to its due date, multiply 
with its weighted to get weighted tardiness. Then sum all weighted tardiness of all jobs, that’s so called Total 
Weighted Tardiness. For Sample X1, it has Total Weighted Tardiness = 4 with detail for its counting as in 
Table 2.  

Table 2. Counting TWT of Sample X1 

  

mesin3 7
mesin2 3
mesin1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 2
5 9

4 1 8

m

t
       

due date
completion 

time weighted total weighted

job 1 17 13 1 max(0,(13-17)*1)
job 2 15 10 1 max(0,(10-15)*1)
job 3 11 15 1 max(0,(15-11)*1)

4TWT  
Figure 5. Determining Completion Time of Each Job         

 
6. Do step 1 – 5 for sample 2 to 6. 
7. After computing the makespan and Total Weighted Tardiness of each sample, the next step is to 
obtain final objective value (z) of each sample. It uses equation (2) to get z.  

(2) 
The makespan, Total Weighted Tardiness, and z for each sample are in Table 3.  

 
 

Table 3. Makespan, TWT, and z Value for Each Sample    Table 4 Ascending order of the Sample Based on z Value  
 

    

sampel makespan TWT Z
X1 15 4 0.150
X2 18 1 0.300
X3 20 5 0.700
X4 17 5 0.400
X5 19 11 0.900
X6 19 11 0.900                          

sampel makespan TWT Z
X1 15 4 0.150
X2 18 1 0.300
X3 17 5 0.400
X4 20 5 0.700
X5 19 11 0.900
X6 19 11 0.900  

 
4.  Determine sample elite 

Sort all z values in ascending mode. With rho of 0.02, there is N*rho = 6*0.02 = 0.12 ~ 1 sample elite. Thus, 
X1 with the smallest z value becomes the only one sample elite among individu in the sample.  
 

5. Update crossover parameter 
Crossover parameter continually updated in each iteration. Thus, the more iteration goes, the smaller the 
parameter value get. This parameter is going to be used to determine stopping criterion.  
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   =   = 0.5            Pps(1)  = (1- )*u + (Pps(0)* ) 

                = (1-0.8)*0.5 + (1*0.8) 
                                     = 0.9 
 

6. Sample elite weighting  
The weight obtained from evaluating the best value sample in the previous iteration. If makespan value of the 
sample is better than the best sample in the previous iteration, then give it weight as big as number of sample 
elite. Conversely, give one as it weight. In this case, the process is still in first iteration and just has one sample 
elite. So, the weighted of sample elite is 1.  
 

7. Linear Fitness Ranking (LFR) 
Linear Fitness Ranking (LFR) value is necessary as parameter in choosing parent sample for crossover process. 
The formula of Linear Fitness Ranking is: 
 
LFR(I(N-i+1)) = Fmax-(Fmax-Fmin)*((i-1)/(N-1))       (3)                             
 
Using Fmin =  1/Z(1) = 6.67 and Fmax = 1/Z(N) = 1/Z(6) = 1.11, we can count LFR for all samples.  
 
X1 : LFR = 6.67-((6.67-1.11)*((1-1)/(6-1))) = 6.67 , X2 : LFR = 6.67-((6.67-1.11)*((2-1)/(6-1))) = 5.56 
X3 : LFR = 6.67-((6.67-1.11)*((3-1)/(6-1))) = 3.33 , X4 : LFR = 6.67-((6.67-1.11)*((4-1)/(6-1))) = 4.44 
X5 : LFR = 6.67-((6.67-1.11)*((5-1)/(6-1))) = 2.22 , X6 : LFR = 6.67-((6.67-1.11)*((6-1)/(6-1))) = 1.11 
 

8. Elitism  
Elitism needs to be held at each iteration to save the sample with the best value. This best sample will occur in 
the next new sample population. The procedure will have only one best sample to be elitism. In this case, 
sample X1 was chosen to be elitism sample.  
 

9. Parent sample selection 
In applying roulette wheel mechanism, parent sample 1 chosen from population of sample elite and parent 
sample 2 chosen from the whole population sample.  
a) Parent sample 1 selection : the evaluation done for each sample. Cumulative weighted of sample divided 
by total weighted. The result then compared with random number. If division result value higher than random 
number, then the sample can be considered as parent sample 1. Because there is only one sample elite, sample 
X1 automatically become parent sample 1.  
b) Parent sample 2 selection : the selection procedure mostly same as parent sample 1, except it use LFR than 
weighted value. For instance, sample X3 decided as parent sample 2.  
 
Total LFR = 6.67+5.56 +3.33 +4.44 + 2.22    +1.11 = 23.33 
for  X1=6.67/23.33 = 0.29 (< 0.6227) 
X2=(6.67+5.56)/23.33=0.52(< 0.6227) 
X3=(6.67+5.56+3.33)/23.33=0.71(> 0.6227)  
 

10. Crossover 
From the previous step, it got X1 and X3 as parent sample. To decide whether the sample have to cross over or 
not, generate a random number. If this random number has smaller value than cross over parameter, then do the 
cross over. If doesn’t, then do not do the cross over and go to the next process. For example, random number 
generated is 0.015, which smaller than cross over parameter (0.9). So the sample parents have to be in cross 
over. The cross over mechanism will do as follows: generate two random numbers, for example we get 0.6948 
and 0.8491. Convert these numbers into integer number. The numbers will become border of genes in sample 
parent that will be exchange between two parents. 
ri = ceil (random*n)                                              (4) 
r1 = ceil(0.4387*9) = 4 -> p1 = 4 
r2 = ceil(0.8491*9) = 8 -> p2 = 8 
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sample parent 1 = 4 5 7 6  9  
sample parent 2 = 1 9 7 8  3  
The numbers inside the brackets will be exchange each other between sample parent 1 and 2. 
 
Sample spring 1 = … … … … 4 6 5 2 …   Sample spring 1 = 7 1 3 8 4 6 5 2 9  
Sample spring 2 = … … … … 1 2 3 8 …    Sample spring 2 = 9 7 4 6 1 2 3 8 5  
 
                      
These sample springs will substitute the old Sample X2 and Sample X3 in a series. Evaluate the next sample, 
the 5th and the 6th sample. Do the same procedure to get two sample parents. Do the cross over mechanism if 
its meet the requirement. If do not, then use both sample parents to substitute 5th and 6th sample. The new 
population when cross over complete as follows:  
 
X1 : 4-5-7-6-1-2-3-8-9 X4 : 4-5-6-1-7-8-2-3-9  X3 : 9-7-4-6-1-2-3-8-5 
X2 : 7-1-3-8-4-6-5-2-9 X5 : 5-7-8-4-6-1-2-3-9 X6 : 7-3-8-6-1-4-5-2-9 
 
11. Mutation 
Mutation parameter (Pm) is a half value of cross over parameter, 0.9/2 = 0.45. The example for mutation 
mechanism can be explained as follow: for sample X3, where i = 1 and r = 0.1174 (<Pm), so do the mutation 
on gen a and gen b, where the position of gen a is ceil (r*n) = ceil(0.1174*9)   2, and position for gen b is 
X3(1,i) = X3(1,1) = 7. 
 
Old sample X3 = 9-7-4-6-1-2-3-8-5  mutated sample X3 = 9-3-4-6-1-2-7-8-5 
For i = 2, the generated random is r = 0.7757 (> Pm), so there is no need to do the mutation on this level. Do 
the same procedure to the entire operation of all samples, except elitism sample. The complete evaluation will 
disorder the original sequence of gen in some sample like below: 
 
X2 : 7-8-5-6-4-2-3-1-9, X3 : 9-3-6-8-1-2-4-7-5, X4 : 1-7-6-3-4-8-2-5-9, X5 : 3-9-5-4-6-1-2-8-7, X6 : 2-9-8-6-
1-3-5-7-4 
 
12. Compute objective value from updated sample 
In this step, we already have a new population consist of samples from cross over, mutation, and elitism 
process. These samples then evaluated through z values like the previous one. It is hoped that the best sample 
of the higher iteration will have better value (smaller, in minimizing case) than the best one in the previous 
iteration. This indicates the successful of the algorithm in purpose of converging solution into optimality 
approach.  
 

Table 5. Makespan, TWT, and z From The First Iteration  
i th sample makespan TWT z

1 15 4 0.1
2 19 8 0.9
3 20 6 0.8
4 15 3 0
5 18 7 0.7
6 20 6 0.8  

 
4. Numerical Experiments 
To test the algorithm performance, it uses data which have been tested before in the previous same problem 
research. The research was held by Fattahi [6] using Simulated Annealing to solve Multi Objective Job Shop 
Scheduling with same objective as used in this research. 
 
4.1 Data  
There are four type of problem with different size for each problem [6] .  
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Table 6. Problem Description of MOJSP  
Type  

of problem 
Number  
of jobs 

Number  
of operations 

Number  
of machines 

MOJ 1 4 3 3 

MOJ 2 6 4 4 
MOJ 3 10 4 6 

MOJ 4 15 4 7 
 
Table 6 shows jobs, machine needed particularly by each operation, time duration to process each operation, 
and due date for each job. 
 

Table 7. Data Input for Problem MOJ 1                Table 8. Data Input for Problem MOJ 2 

   
 

Table 9. Data Input for Problem MOJ 3 

 
 

Table 10. Data Input for Problem MOJ 4 

 
 
 
4.2 Experiment Results 
Comparison table for experiment result of Cross Entropy-Genetic Algorithm versus Simulated Annealing in 
solving Multi Objective Job Shop Scheduling as follow: 
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 Table 11. Comparison Table for SA vs CEGA Solution  1  

           
 
Table 12. Gap Solution of SA-CEGA in MOJ 

i th alternative 
solution

makespan 
SA

makespan 
CEGA

gap
TWT 
SA

TWT 
CEGA

gap

1 354 354 0 233 233 0
2 408 408 0 140 140 0
3 396 396 0 175 175 0

MOJ 1

 
 
For more details about comparison on each type of problem, the table below will show gap between makespan 
SA – makespan CEGA and TWT SA – TWT CEGA. 
 
Table 13. Gap Solution of SA-CEGA in MOJ 2     Table 14. Gap Solution of SA-CEGA in MOJ 3 

i th alternative 
solution

makespan 
SA

makespan 
CEGA

gap
TWT 
SA

TWT 
CEGA

gap

1 407 407 0 247 247 0

2 430 430 0 138 138 0
3 433 433 0 78 78 0
4 445 445 0 75 79 5.33
5 459 459 0 40 40 0
6 484 484 0 33 33 0
7 487 487 0 32 32 0
8 494 494 0 20 20 0

MOJ 2

   

i th alternative 
solution

makespan 
SA

makespan 
CEGA

gap
TWT 
SA

TWT 
CEGA

gap

1 580 580 0 572 597 4.371
2 583 583 0 533 538 0.938
3 590 590 0 419 419 0
4 596 596 0 167 223 33.533

MOJ 3

 
 

5. Analyses 
On Table 11, some numbers bolded means that there is some gap between SA and CEGA solutions. But it only 
appears on TWT’s column, which means that there is no gap between SA and CEGA in makespan value. This 
could happen because solution of CEGA got from so many alternative solutions. With big number of N 
solutions, the possibility of getting the same solution as SA is high. In job shop scheduling case, makespan 
from different sequence priority can have same value. Because makespan only considering total completion 
time. While TWT can be different in different sequence priority because it is depend on completion time of 
each job. For MOJ 1 problem, there is no gap between CEGA and SA, both on makespan and TWT value. 
Thus, CEGA could be considered success in small size problem. As well as MOJ 2, although there is a gap for 
5.3%, with the other maximum solution achievement, it can be ignored. Thus, CEGA for problem with MOJ 2 
size have good performance as effective as in MOJ 1 problem. There are so many solutions produced by CEGA 

makespan TWT makespan TWT makespan TWT makespan TWT 
354 233 407 247 580 572 826 2769 
396 175 430 138 583 533 831 2385 
408 140 433 78 590 419 842 2039 

445 75 596 167 868 1344 
459 40 883 1285 
484 33 
487 32 
494 20 

makespan TWT makespan TWT makespan TWT makespan TWT 
354 233 407 247 580 597 826 1901 
396 175 430 138 583 538 831 2320 
408 140 433 78 590 419 842 2030 

445 79 596 223 868 1344 
459 40 883 1282 
484 33 
487 32 
494 20 

MOJ 2 MOJ 3 MOJ 4 MOJ 1 

Simulated Annealing 
MOJ 1 MOJ 2 MOJ 3 

Cross Entropy-Genetic Algortihm 

MOJ 4 
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which make it possible to get this no-gap-solution. With same weight preference between two objectives, 
CEGA could give optimal solution as well as non-dominated solution for MOJ 1 and MOJ 2 problem. 

 
Table 13. Gap Solution of SA-CEGA in MOJ 2  

i th alternative 
solution

makespan 
SA

makespan 
CEGA

gap
TWT 
SA

TWT 
CEGA

gap

1 407 407 0 247 247 0

2 430 430 0 138 138 0
3 433 433 0 78 78 0
4 445 445 0 75 79 5.33
5 459 459 0 40 40 0
6 484 484 0 33 33 0
7 487 487 0 32 32 0
8 494 494 0 20 20 0

MOJ 2

 
 
Table 14. Gap Solution of SA-CEGA in MOJ 3   Table 15. Gap Solution of SA-CEGA in MOJ 4  

 

i th alternative 
solution

makespan 
SA

makespan 
CEGA

gap
TWT 

SA
TWT 

CEGA
gap

1 580 580 0 572 597 4.371
2 583 583 0 533 538 0.938
3 590 590 0 419 419 0
4 596 596 0 167 223 33.533

MOJ 3

       

i th alternative 
solution

makespan 
SA

makespan 
CEGA

gap
TWT 
SA

TWT 
CEGA

gap

1 826 826 0 2769 1901 -31.347
2 831 831 0 2385 2320 -2.725
3 842 842 0 2039 2030 -0.441
4 868 868 0 1344 1344 0
5 883 883 0 1285 1282 -0.233

MOJ 4

 
 
For MOJ 3 problem, all of TWT CEGA have gap to TWT SA. 33.35% as the biggest gap founded on 4th 
alternative solution. This could be happen because CEGA doesn’t have restore mechanism for non-dominated 
solution founded in every iteration. It needs more effort to deliver more alternative solutions. With more 
alternative solutions, make possible to get the solution close to TWT SA. There is negative gap founded on gap 
TWT for MOJ 4 problem. It means that solution obtained by CEGA is better that SA’s. This is because CEGA 
could perform wider search solution with crossover and mutation mechanism. When SA stuck with local 
search, it limits searching area to get possible better solution. As mentioned before, SA evaluating a solution 
based on local search. So, the chances to gain a solution outside the searching space were too small. While 
CEGA continue in diversified through cross over and mutation process. This diversification process allows 
CEGA to search solution in the area not explored before. In this case, CEGA had the edge on SA. Despitefully, 
SA which suggested in the reference journal has stopping criteria in particular condition. This stopping 
criterion was added to algorithm by purposes of shorting computational time. It is delimitate searching solution 
of SA.   
 
However, the first alternative solution of TWT CEGA is smaller than TWT CEGA on the second and third 
ones. Considering makespan value, the second and third alternative solutions are dominated by the first 
alternative solution. This is in contradiction with Pareto concept that the solution in Pareto set solutions doesn’t 
dominating each other. This phenomenon appears because of CEGA mechanism which is count on solution 
selection based on single objective value, not on Pareto concept.  
 
6. Conclusion 
Based on the experiment results and analysis above, it is proved that hybrid CEGA is an efficient method in 
solving MOJSP. It produces competitive solutions especially in small-scale problems. CEGA is much better in 
doing diversification solution than Simulated Annealing which use neighborhood search method. But, CEGA is 
worse in determining non-dominated solution because it’s only evaluating a solution based on single objective 
value. 
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